
ce

PHYSICAL REVIEW E 67, 027303 ~2003!
Oscillatory Rayleigh-Marangoni convection in a layer heated from above:
Numerical simulations with an undeformable free surface
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1Laboratoire de Mode´lisation en Mécanique, Universite´ Pierre et Marie Curie (Paris VI), 8 rue du Capitaine Scott, 75015 Paris, Fran

2Max-Planck-Institute for the Physics of Complex Systems, No¨thnitzer Strasse 38, 01187 Dresden, Germany
3Institute for Theoretical Physics, Department of Physics, Dresden University of Technology, 01062 Dresden, Germany

~Received 6 September 2002; published 27 February 2003!

Joint action of buoyancy and thermocapillary forces can destabilize the motionless state in a liquid layer
heated from above due to the coupling of internal and surface waves. The nonlinear evolution of this oscilla-
tory instability is studied using three-dimensional direct numerical simulations with a pseudospectral Fourier-
Chebyshev code. Alternating rolls and standing, oscillating squares are observed as final convective patterns.
The flow is strongly localized near the free surface. Buoyancy plays a negligible role in kinetic energy
production.
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Bénard convection has been a paradigm for pattern
mation in spatially extended systems for more than a cen
@1–3#. Its nonlinear flow patterns continue to be the subje
in contemporary research@4#. Linear stability of the basic
motionless state of the Be´nard layer was explored earl
@3,5,6#, but the interaction of certain physical mechanisms
the fluid layer still offers surprises: intuitively, neither buo
ancy nor the thermocapillary effect should be able to sus
a flow in a layer with an undeformable free surface which
heated at the top. Nevertheless, an oscillatory instability
ists in this case, which results from the interplay of M
rangoni surface waves and internal gravity waves@7#. Both
of them are damped when considered in isolation@8#.

In Ref. @7#, the linear theory of this peculiar instability i
treated in great detail, but the investigation of the nonlin
pattern is limited to the two-dimensional case. In Ref.@1#,
amplitude equations are applied to the three-dimensio
case. The authors derive evolution equations for the co
cients of up to 72 superimposed plane wave modes, wh
are then integrated numerically. It turns out that the stand
two-dimensional waves found in Ref.@7# are unstable, and
that ~for certain parameters already considered in Ref.@7#!
the system evolves towards an alternating roll pattern w
the integration is started from random initial values.

Apart from actual experiments, direct numerical simu
tions can be used to put these predictions to the test an
overcome the restrictions of small solution amplitude inh
ent in the amplitude equation approach. Two-dimensio
simulations have been performed previously@9#. The present
paper describes results of three-dimensional direct nume
simulations for this system. We examine the horizontal a
vertical flow structure as well as the kinetic energy balan
of this peculiar type of convective motion.

We consider the one-layer approximation of Be´nard-
Marangoni convection@5#. The heat flux densityq at the free
surface is prescribed. Notice thatq is negative in the case o
heating from above. The nondimensional computatio
model in the domain 0<z<1 with periodic boundary con
ditions inx andy ~periodicity intervalsLx andLy) comprises
the following dimensionless equations and boundary con
tions:
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] tv1~v•“ !v52“p1“

2v1Rauez, “•v50, ~1a!

P$] tu1~v•“ !u%5“

2u1vz , ~1b!

v5u50 ~at z50!, ~1c!

vz5]zu50, ]zvh52Ma“hu ~at z51!. ~1d!

Equations~1! for the velocityv, the pressurep and tempera-
ture perturbationu are based on the layer thicknessd as unit
of length,d2/n as unit of time, andqd/l as unit of tempera-
ture, wherel denotes the heat conductivity of the fluid. Th
Prandtl numberP5n/k represents the ratio of kinematic vis
cosity and thermal diffusivity. The full nondimensional tem
perature is defined byT5Pu112z, and the Marangoni and
Rayleigh numbers by Ma5gqd2/lrnk and Ra
5agqd4/lnk. Here r denotes the density,a the thermal
expansion coefficient, andg52ds/dT is the~negative! de-
rivative of the surface tension with respect to temperatu
The subscripth indicates the horizontal part of a vector.

We solve the system~1! numerically using a pseudospe
tral Fourier-Chebyshev discretization based on the poloid
toroidal decomposition of the velocity field@10#. This dis-
cretization provides a dense vertical spacing of
collocation points at the top and bottom boundaries, a
should therefore be capable of resolving strong gradie
even with a moderate number of modes. The method is ba
on that presented in Ref.@11# for Ra50. Time stepping is
done using the explicit, second-order Adams-Bashfo
method for the nonlinear terms. For the linear terms~includ-
ing the buoyancy term!, an implicit method ensures numer
cal stability. The second-order accuracy is desirable to av
severe limitations in the sizeDt of the time step, but the
Crank-Nicolson method turned out to be weakly unstable
was replaced by the less accurate but more stableq method
@12#. The code was validated with respect to the nonlin
terms by comparison with nonlinear simulations of Be´nard-
Marangoni convection at low Prandtl number~with Ra50,
Ma580! @11# and with respect to the linear terms by repr
ducing the growth ratel of the stationary instability for heat
ing from below@6# with a relative error of 631027 using 33
Chebyshev polynomials (Ra5400, Ma550, wave number
k51.5, P56, time stepDt51023, l50.071 187 19).

In experiments, the heat flux densityq can be easily var-
©2003 The American Physical Society03-1
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FIG. 1. Surface temperature of alternating rol
(P56,Ma526.03105,B53). Interval between snap
shots isDt50.0028.
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ied in contrast tod or the fluid itself, i.e.,B5Ra/Ma ~the
dynamic Bond number! andP are fixed for a given setup. W
take the same approach in our simulations and consider
rameters already studied in Ref.@7#, namely,P56 and P
50.1 and values ofB in the interval 3<B<10. For P56
and B53, the critical wave number iskc51.506 at Mac
524.1163105. It is desirable to select large multiples o
the corresponding critical wavelength for the horizontal
mensions of the computational domain in order not to c
strain the pattern. The computational workload as a limit
factor grows with the domain size due to the correspondin
larger grid and possibly longer initial transients. We ha
takenLx5Ly54p/1.5 as a compromise.

We shall first discuss our results forP56, where we ob-
tained alternating roll patterns in the casesB53, B54, and
B55 when starting from random initial conditions. Th
kind of pattern results from the superposition of two orthog
nal plane standing waves and is a generic pattern for
Hopf bifurcation on a square lattice@13#.

Figure 1 shows six snapshots of the surface tempera
for alternating rolls and Fig. 2~a! shows the correspondin
temporal evolution of the~Fourier! amplitudes of the two
standing waves generating this pattern, which have a rela
phase shift ofp/2. The first five plots of Fig. 1 represent ha
of the total period 2p/v, wherev is the frequency of the
basic oscillation. The second half period~not shown! is
analogous to the first except for spatial shifts of half a wa
length in bothx andy directions. We note that the tempor
phase shift ofp/2 between the two amplitudes does n
mean that pure rolls exist at any time during the evoluti
Figure 2~b! shows the evolution of the kinetic energy com
ponentsEx andEy defined by

E5Ex1Ey1Ez5
1

2EV
~vx

21vy
21vz

2!dV, ~2!

whereV denotes the periodicity domain. The quantitiesEx
and Ey are always positive, i.e., the flow is never indepe
dent of eitherx or y at any time. The persistence of thre
dimensionality is due to the oscillatory nature of the instab
ity ~which requires complex eigenmodes of the line
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stability problem!. The ratio between the maximum an
minimum values ofEx andEy is indicative of the variation
of the complex,z-dependent phase of the marginally stab
mode~near the instability threshold Mac) @14#.

The orientation of the pattern is not necessarily paralle
the coordinate axes. Starting from random initial conditio
we have also found a pattern with oblique orientation cor
sponding to the wave numberk51.677, whereas the paralle
pattern has the basic wave numberk51.5.

To characterize the alternating rolls quantitatively, w
have measured the oscillation frequencyv and the temporal
average of kinetic energyE as function of Ma for (P56,
B53) for k51.5. Figure 3~b! shows the relationv(Ma),
which is quantitatively well captured by the linear theory
the basic state. The relationE(Ma) plotted in Fig. 3~a! is
well fitted by a straight line. Extrapolation toE50 provides
Ma524.143105, which is only slightly off the critical
value Mac . Both observations suggest that a description

FIG. 2. Alternating rolls withP56, Ma526.03105, B53: ~a! Am-
plitudes of the two orthogonal waves with wave vectorsk1 and k2. ~b!
Energy componentsEx andEy .
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ing a perturbative or amplitude equation approach can p
vide a quantitative description of the flow in the range e
plored by our simulations. We remark that these simulati
were performed with 64 Fourier modes in the horizontal
rections and 33 Chebyshev modes in the vertical direct
Visual inspection of vorticity plots showed no indication
small scale features indicative of spatial under-resoluti
The high oscillation frequencies of the solutions requ
fairly small values for the time step. Initially,Dt51024 was
used, which was decreased toDt51025 upon approach to
the final state. The corresponding change inE due to this
smallerDt was about 10%. Another order of magnitude d
crease ofDt changedE by less than 1%.

The spatial structure of the flow is illustrated by the plo
of Fig. 4. We see from Fig. 4~a! that the isotherms in the
planey50 are only slightly disturbed by the convective m
tion. Figure 4~b! shows the horizontal mean square avera
of the velocity components. Large vertical gradients of
horizontal velocity exist near the free surface, which are
pected from linear theory@7#. The presence of such stron
gradients underlines the utility of our Fourier-Chebyshev
merical method. Steep vertical gradients of the tempera
perturbationu near the free surface are also predicted
linear theory, but they do not show up in Fig. 4~a! due to the
small overall amplitude ofu. The change in the averag
surface temperature is less than 1022, i.e., the convective
heat transport by the flow is insignificant.

The caseP50.1 presented significant numerical problem
due to long transients and higher vertical resolution requ
ments (65 Chebyshev modes instead of 33). This is bec
the flow is even more strongly localized near the free surf
than for P56. We have only obtained one fully converge
simulation withP50.1,B510 shown in Fig. 5. The patter
is different fromP56, namely, standing, oscillating square

FIG. 3. Temporal mean of kinetic energy E~a! and angular frequencyv
~b! for orthogonal alternating rolls with basic wave numberk51.5 and
P56, B53. The full line for v corresponds to the prediction from linea
theory ~differs by factor 1/2p from data in Refs.@7,1#!.
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The two orthogonal standing waves making up this patt
are parallel to the coordinate axes. The wave vectors h
the sizek51.5, and the wave amplitudes are oscillating
phase@Fig. 5~b!#. The critical parameters from Ref.@7# are
Mac525.543104, kc51.501 for P50.1, andB510. We
have not attempted to trace the solution to other values of
because of long transients. Other simulations forP50.1 with
larger aspect ratio also showed a preference of the stand
oscillating squares although these patterns had defects w
persisted during the limited simulation times.

To conclude our discussion on the numerical results,
now consider the energy balance. Kinetic energy can be g
erated from buoyancy and Marangoni forces. After ini
transients, the kinetic production equals dissipation throu
viscosity over an oscillation period. The energy balance
obtained by multiplying the Navier-Stokes Equation~1a! by
vand integration over the fluid volumeV. We find

MaH E
z51

vh“hudS1BE
V

vzudVJ 52E
V

«

P
dV, ~3!

where« denotes the local energy dissipation rate. The ter
on the left hand side of Eq.~3! are the production terms o
thermocapillary effect and buoyancy. Buoyancy turns out
be negligible in this relation, the buoyancy terms is by fo

FIG. 4. Typical snapshots for parallel alternating rolls withP56,
Ma526.03105, B53. ~a! Temperature iny50 plane; vertical profiles of
mean square velocity components~b! and energy dissipation rate« ~c! ~both
horizontal means!.
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orders of magnitude smaller than the Marangoni term foP
56. In the converged state forP50.1 it is smaller by a
factor of about 10210. The dissipation is strong in region
with strong velocity gradients, i.e., near the free surface. F
ure 4~c! shows a representative vertical profile of« ~aver-
aged horizontally! for P56.

The negligible role of the buoyancy term in the ener
budget can be understood from the asymptotic analysis o

FIG. 5. Standing squares forP50.1, Ma525.943104, B510:
~a! Surface temperature snapshot;~b! amplitudes of the two orthogona
waves with wave vectorsk1 andk2.
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linear stability problem in Ref.@7#. In this asymptotic analy-
sis in the small parametere452P/Ra, the linear problem is
solved separately in the bulk and in a surface layer, wh
are then matched to provide the dispersion relation. The h
zontal velocity in the surface boundary layer has a lead
term of ordere21, whereas the temperature perturbation a
the vertical velocity have leading ordere0. The terms in the
energy budget containing the horizontal velocity comp
nents, namely, the Marangoni energy production and the
cous dissipation term, are therefore much bigger than
buoyancy term, to which the horizontal velocity does n
contribute.

In summary, we have performed three-dimensional sim
lations of convective flow in a plane layer heated from abo
driven by the oscillatory instability mechanisms discover
by Rednikovet al. @7#. The simulations were performed wit
a pseudospectral Fourier-Chebyshev code. A sufficiently
curate temporal discretization using theq method withq
'0.5 for the linear terms was required to reproduce the p
dicted instability without prohibitively small time steps i
the simulations. The observed flow patterns turned out to
alternating rolls forP56 and standing, oscillating square
for P50.1. The vertical flow structure and the energy b
ance are in accord with linear stability theory and
asymptotic solution.

An interesting open problem to be addressed in the fra
work of amplitude equations concerns the domains of e
tence of alternating rolls and standing squares in the par
eter space and the stability of those patterns. Equally or m
important is the need for experimental work. Alternating r
patterns have to our knowledge only been obtained in sim
lations or analytical work on compressible magnetoconv
tion @15,16#, two-layer Marangoni convection@14#, and the
Maxwell-Bloch laser equations@17#.

We are grateful to M. Bestehorn and A. Nepomnyashc
for interesting discussions and to the Zentrum fu¨r Hochleis-
tungsrechnen at Dresden University of Technology for
extensive use of its parallel computers.
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