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Oscillatory Rayleigh-Marangoni convection in a layer heated from above:
Numerical simulations with an undeformable free surface
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Joint action of buoyancy and thermocapillary forces can destabilize the motionless state in a liquid layer
heated from above due to the coupling of internal and surface waves. The nonlinear evolution of this oscilla-
tory instability is studied using three-dimensional direct numerical simulations with a pseudospectral Fourier-
Chebyshev code. Alternating rolls and standing, oscillating squares are observed as final convective patterns.
The flow is strongly localized near the free surface. Buoyancy plays a negligible role in kinetic energy

production.
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Benard convection has been a paradigm for pattern for- v+ (v-V)v=—Vp+V2?+Rade,, V-v=0, (1a
mation in spatially extended systems for more than a century P{3,0+(v-V) 6 =V26+0 (1b)
t . - Z

[1-3]. Its nonlinear flow patterns continue to be the subjects

in contemporary researdd]. Linear stability of the basic v=6=0 (at z=0), (10
motionless state of the ‘Bard layer was explored early v,=3d,0=0, d,v,=—MaVv,e (atz=1). (1d
[3,5,6], but the interaction of certain physical mechanisms in ) )

the fluid layer still offers surprises: intuitively, neither buoy- EQuations(1) for the velocityv, the pressure and tempera-
ancy nor the thermocapillary effect should be able to sustaiffré Perturbatiord are based on the layer thicknasas unit

5 ) . ;

a flow in a layer with an undeformable free surface which isOf length,d*/ as unit of time, andjd/x as unit of tempera-

heated at the top. Nevertheless, an oscillatory instability exture, where\ denotes the heat conduct|\{|ty of Fhe ﬂu"_j' The
Prandtl numbeP = v/ k represents the ratio of kinematic vis-

ists in this case, which results from the interplay of Ma- it dth | diffusivity. The full di ional t
rangoni surface waves and internal gravity waj/és Both gzz%luﬁanis deefri?ea:j b;]:sP“grl—:‘ ;Jn dnt%r:a ;\;In:aergilggr?i air;'
of them are damped when considered in isolafi®h Rayleigh numbers by Mayqd¥Aprk and Ra

In Ref.[7], the linear theory of this peculiar instability is ,
treated in great detail, but the investigation of the nonlinear.. agqd/Av. Herep denotes the densityy the thermal

ST , . expansion coefficient, ang= — Tis the(n ivi -
pattern is limited to the two-dimensional case. In Réf], b =~ do/dT is the (negativg de

. . . . . rnvative of the surface tension with respect to temperature.
amplitude equations are applied to the three-dimensionaty, s ¢ nscriph indicates the horizontal part of a vector.

case. The authors derive_ evolution equations for the coe_ffi- We solve the systerfl) numerically using a pseudospec-
cients of up to 72 superimposed plane wave modes, whicky| Fourier-Chebyshev discretization based on the poloidal-
are then integrated numerically. It turns out that the standingggidal decomposition of the velocity fie[d.0]. This dis-
two-dimensional waves found in Réf7] are unstable, and cretization provides a dense vertical spacing of the
that (for certain parameters already considered in RER  collocation points at the top and bottom boundaries, and
the system evolves towards an alternating roll pattern wheghould therefore be capable of resolving strong gradients
the integration is started from random initial values. even with a moderate number of modes. The method is based
Apart from actual experiments, direct numerical simula-on that presented in Refll] for Ra=0. Time stepping is
tions can be used to put these predictions to the test and tione using the explicit, second-order Adams-Bashforth
overcome the restrictions of small solution amplitude inher-method for the nonlinear terms. For the linear te(inslud-
ent in the amplitude equation approach. Two-dimensionaing the buoyancy terjn an implicit method ensures numeri-
simulations have been performed previoUsl} The present cal stability. The second-order accuracy is desirable to avoid
paper describes results of three-dimensional direct numericaevere limitations in the sizAt of the time step, but the
simulations for this system. We examine the horizontal andCrank-Nicolson method turned out to be weakly unstable. It
vertical flow structure as well as the kinetic energy balancevas replaced by the less accurate but more stéhteethod
of this peculiar type of convective motion. [12]. The code was validated with respect to the nonlinear
We consider the one-layer approximation of faed- terms by comparison with nonlinear simulations ofnBed-
Marangoni convectioh5]. The heat flux density at the free  Marangoni convection at low Prandtl numbgvith Ra=0,
surface is prescribed. Notice thais negative in the case of Ma=80) [11] and with respect to the linear terms by repro-
heating from above. The nondimensional computationatlucing the growth rat& of the stationary instability for heat-
model in the domain &z=<1 with periodic boundary con- ing from below[6] with a relative error of & 10~/ using 33
ditions inx andy (periodicity intervald_, andL,) comprises =~ Chebyshev polynomials (Ra400, Ma=50, wave number
the following dimensionless equations and boundary condik=1.5, P=6, time stepAt=10 3, A=0.071187 19).
tions: In experiments, the heat flux densifycan be easily var-
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FIG. 1. Surface temperature of alternating rolls
(P=6,Ma=—6.0x10°,B=3). Interval between snap-
shots isAt=0.0028.

ied in contrast tod or the fluid itself, i.e.,.B=Ra/Ma(the stability problem. The ratio between the maximum and
dynamic Bond numbgrndP are fixed for a given setup. We minimum values of, andE, is indicative of the variation
take the same approach in our simulations and consider paf the complex,z-dependent phase of the marginally stable
rameters already studied in R¢f], namely,P=6 andP mode(near the instability threshold Mp[14].

=0.1 and values oB in the interval 3xB=<10. ForP=6 The orientation of the pattern is not necessarily parallel to
and B=3, the critical wave number i&.=1.506 at Ma  the coordinate axes. Starting from random initial conditions
=—4.116x10. It is desirable to select large multiples of we have also found a pattern with oblique orientation corre-
the corresponding critical wavelength for the horizontal di-sponding to the wave numbkr1.677, whereas the parallel
mensions of the computational domain in order not to conpattern has the basic wave numier 1.5.

strain the pattern. The computational workload as a limiting To characterize the alternating rolls quantitatively, we
factor grows with the domain size due to the correspondinglhave measured the oscillation frequenrgyand the temporal
larger grid and possibly longer initial transients. We haveaverage of kinetic energ as function of Ma for P=6,
takenL,=L,=4m/1.5 as a compromise. B=3) for k=1.5. Figure &) shows the relatiorw(Ma),

We shall first discuss our results fBr=6, where we ob- which is quantitatively well captured by the linear theory of
tained alternating roll patterns in the cags 3, B=4, and the basic state. The relatidg(Ma) plotted in Fig. 8a) is
B=5 when starting from random initial conditions. This well fitted by a straight line. Extrapolation ©=0 provides
kind of pattern results from the superposition of two orthogo-Ma= —4.14x 10°, which is only slightly off the critical
nal plane standing waves and is a generic pattern for thealue Ma . Both observations suggest that a description us-
Hopf bifurcation on a square latti¢a3].

Figure 1 shows six snapshots of the surface temperature
for alternating rolls and Fig. () shows the corresponding
temporal evolution of th€Fourien amplitudes of the two
standing waves generating this pattern, which have a relative
phase shift ofr/2. The first five plots of Fig. 1 represent half
of the total period Zr/w, wherew is the frequency of the
basic oscillation. The second half perigdot shown is
analogous to the first except for spatial shifts of half a wave-
length in bothx andy directions. We note that the temporal
phase shift of7/2 between the two amplitudes does not
mean that pure rolls exist at any time during the evolution.
Figure 2b) shows the evolution of the kinetic energy com-
ponentsE, andE, defined by

_ _E 2, .2, 2
E—EX+Ey+EZ—2 (vitovy+v3)dQ, (2)
Q

where() denotes the periodicity domain. The quantities 0 = s P

L. . . . 0 0.005 001 0.015 002 0025
andE, are always positive, i.e., the flow is never indepen- t
dgnt Of.EIthgl’X.OI’ y at any tlme'. The persistence of threg— FIG. 2. Alternating rolls withP=6, Ma=— 6.0 1°, B=3: (a) Am-
_d|men3|_0na||ty |S_due to the 030'”?"50“’ nature of the |n5_tab||'plitudes of the two orthogonal waves with wave vect@gsand k,. (b)
ity (which requires complex eigenmodes of the linearenergy componentg, andE, .
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FIG. 3. Temporal mean of kinetic energy(& and angular frequency 1.5 T T T T
(b) for orthogonal alternating rolls with basic wave number 1.5 and
P=6, B=3. The full line for w corresponds to the prediction from linear Pr=6.0
theory (differs by factor 1/2r from data in Refs[7,1]). 1.0
7
ing a perturbative or amplitude equation approach can pro- 10°e
vide a quantitative description of the flow in the range ex- 0.5 ]
plored by our simulations. We remark that these simulations
were performed with 64 Fourier modes in the horizontal di- 00 . . .

rections and 33 Chebyshev modes in the vertical direction. "0 02 04 06 08 1

Visual inspection of vorticity plots showed no indication of Z

small scale features indicative of spatial under-resolution, F'G: 4. Typical snapshots for parallel alternating rolls wih-6,
Ma=—6.0x 10°, B=3. (a) Temperature iry=0 plane; vertical profiles of

]:l;ﬁ hlgh oscillation freql'_lenCIeS of the SOIthlor_]i’ requlreme{;m square velocity componefitg and energy dissipation rate(c) (both

y small values for the time step. InitiallpAt=10"" was  orizontal means

used, which was decreased &4=10"° upon approach to _ _ _

the final state. The corresponding changeEimlue to this The two orthogonal standing waves making up this pattern

smallerAt was about 10%. Another order of magnitude de-are parallel to the coordinate axes. The wave vectors have

crease ofAt changecE by less than 1%. the sizek=1.5, and the wave amplitudes are oscillating in
The spatial structure of the flow is illustrated by the plotsPhaselFig. Xb)]. The critical parameters from Ref7] are

of Fig. 4. We see from Fig. (4) that the isotherms in the H ac:_f'?’[?x 10:’dkf:tl'501hfor P|=tQ.1,t an;thzl(?. WefM
planey=0 are only slightly disturbed by the convective mo- ave not atteémpted to trace the sofution 1o other va ues of via

tion. Figure 4b) shows the horizontal mean square average?aerczlrjzes Oélccgr:gtfgaglss'gn;ﬁbvovteh de;SITeL;Largzgfg:?HtV\s”tg]n din
of the velocity components. Large vertical gradients of the g P P 9

horizontal velocity exist near the free surface, which are ex_oscnlatmg squares although these patterns had defects which

pected from linear theorj/7]. The presence of such strong persisted during the limited simulation times.

radients underlines the utility of our Fourier-Chebyshev nu- To conclude our discussion on the numerical results, we
grad ity . y now consider the energy balance. Kinetic energy can be gen-
merical method. Steep vertical gradients of the temperatur

perturbationd near the free surface are also predicted bygrate.d from buqyancy and Marangoni fo'rce's. After inital
i theory, but they do not show up in Figatdue to th transients, the k|net|c_pro_duct|on_ equals dissipation through
Inéar theory, but they do not show up Japdue (o he viscosity over an oscillation period. The energy balance is
small overall amplitude off. The change in the average obtained by multiplying the Navier-Stokes Equatida) by
surface temperature is less than 10i.e., the convective vand integration over the fluid volur@. We find
heat transport by the flow is insignificant. '

The casd?=0.1 presented significant numerical problems e
due to long transients and higher vertical resolution require- Ma{ levhvhadSJrBJnUZadQ] T QBdQ' ®
ments (65 Chebyshev modes instead of 33). This is because
the flow is even more strongly localized near the free surfacevheree denotes the local energy dissipation rate. The terms
than forP=6. We have only obtained one fully converged on the left hand side of Eq3) are the production terms of
simulation withP=0.1B=10 shown in Fig. 5. The pattern thermocapillary effect and buoyancy. Buoyancy turns out to
is different fromP= 6, namely, standing, oscillating squares. be negligible in this relation, the buoyancy terms is by four
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FIG. 5. Standing squares foP=0.1, Ma=—5.94x10", B=10:
(a) Surface temperature snapshéb) amplitudes of the two orthogonal
waves with wave vectork; andk,.

orders of magnitude smaller than the Marangoni termFor
=6. In the converged state fd?=0.1 it is smaller by a
factor of about 10'°. The dissipation is strong in regions

PHYSICAL REVIEW B7, 027303 (2003

linear stability problem in Ref.7]. In this asymptotic analy-
sis in the small parametef = — P/Ra, the linear problem is
solved separately in the bulk and in a surface layer, which
are then matched to provide the dispersion relation. The hori-
zontal velocity in the surface boundary layer has a leading
term of ordere” 1, whereas the temperature perturbation and
the vertical velocity have leading ordef. The terms in the
energy budget containing the horizontal velocity compo-
nents, namely, the Marangoni energy production and the vis-
cous dissipation term, are therefore much bigger than the
buoyancy term, to which the horizontal velocity does not
contribute.

In summary, we have performed three-dimensional simu-
lations of convective flow in a plane layer heated from above
driven by the oscillatory instability mechanisms discovered
by Rednikovet al.[7]. The simulations were performed with
a pseudospectral Fourier-Chebyshev code. A sufficiently ac-
curate temporal discretization using tle method with ¢
~0.5 for the linear terms was required to reproduce the pre-
dicted instability without prohibitively small time steps in
the simulations. The observed flow patterns turned out to be
alternating rolls forP=6 and standing, oscillating squares
for P=0.1. The vertical flow structure and the energy bal-
ance are in accord with linear stability theory and its
asymptotic solution.

An interesting open problem to be addressed in the frame-
work of amplitude equations concerns the domains of exis-
tence of alternating rolls and standing squares in the param-
eter space and the stability of those patterns. Equally or more
important is the need for experimental work. Alternating roll
patterns have to our knowledge only been obtained in simu-
lations or analytical work on compressible magnetoconvec-
tion [15,16], two-layer Marangoni convectiofl4], and the

with strong velocity gradients, i.e., near the free surface. FigMaxwell-Bloch laser equations 7].

ure 4c) shows a representative vertical profile of(aver-
aged horizontallyfor P=6.
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for interesting discussions and to the Zentrum Klochleis-

The negligible role of the buoyancy term in the energytungsrechnen at Dresden University of Technology for the
budget can be understood from the asymptotic analysis of thextensive use of its parallel computers.
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